Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions
نویسندگان
چکیده
The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and it plays a critical role in abiotic stress responses. To test the possibility that the SUMO E3 ligase could be used to engineer drought- and heat-tolerant crops, the rice gene OsSIZ1 was overexpressed in cotton. We report here that overexpression of OsSIZ1 in cotton results in higher net photosynthesis and better growth than wild-type cotton under drought and thermal stresses in growth chamber and greenhouse conditions. Additionally, this tolerance to abiotic stresses was correlated with higher fiber yield in both controlled-environment and field trials carried out under reduced irrigation and rainfed conditions. These results suggest that OsSIZ1 is a viable candidate gene to improve crop yields under water-limited and rainfed agricultural production systems.
منابع مشابه
Response of different rice cultivars (Oryza sativa L.) to water-saving irrigation in greenhouse conditions
Due to increasing water and growing demand for food a more efficient water use system is needed for agriculture. This is more evidence for rice production with a higher water use for economical production. A large cultivar×water regime interaction exists for grain yield in rice. Therefore, information is required to adopt new rice cultivars with high yield potential under water-saving condition...
متن کاملشناسایی ژنوتیپ های متحمل به تنش خشکی در گندم دیم با استفاده از شاخص های تحمل خشکی
Among different environmental stresses, drought is of great importance that induces a highly negative effect on crop production. In order to evaluate drought tolerance in dryland wheat genotypes, 36 genotypes were studied in a randomized complete block design with three replications under rainfed (drought stress) and supplemental irrigation conditions during 2016–2017 growing season in Research...
متن کاملExpression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions.
The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequester...
متن کاملRegulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice
Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...
متن کاملThe Effects of Drought Stress on Improved Cotton Varieties in Golesatn Province of Iran
Drought stress is one of the most important abiotic stresses influencing performance of crop plants. Therefore, the identification or development of tolerant genotypes is of high importance for incorporating in cotton production. In this study to evaluate the effect of drought stress on some cotton traits, 5 improved cotton varieties were studied in a split plot design with three replications i...
متن کامل